DIGITAL TRANSFORMATION WEBCAST SERIES

Business Operations

September 24, 2020

Your presenters

Karen Wiltgen Principal Karen.Wiltgen@rsmus.com

Gavin Backos Principal Gavin.Backos@rsmus.com

Richard Davis Principal Richard.Davis@rsmus.com

Ron Browning Senior Director Ron.Browning@rsmcanada.com

Agenda

Topic

Introduction and overview

Date driven transformation

Digital transformation journey

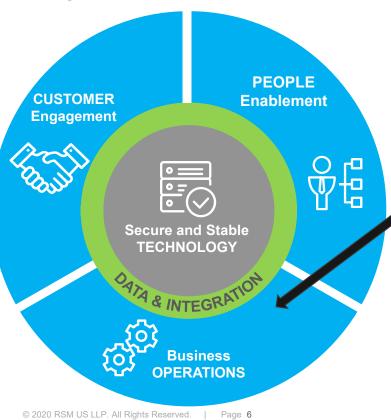
Digital workflow

Wrap-up and Q&A

Learning objectives

By the end of this session, you will:

- Assess the agility of their current business operations
- Evaluate whether their current processes are leveraging emerging technologies to streamline operations
- Explain how to automate routine procedures to allow employees to perform more value-added tasks


DIGITAL STRATEGY: OVERVIEW

Setting the stage for transformation

How We View Digital Transformation

Digital is not just about technology – its about how an organization can use technology to enable and reach their goals.

Secure and Stable Technology

All of the people, processes and systems necessary to maintain the systems, infrastructure and security.

Customer Engagement

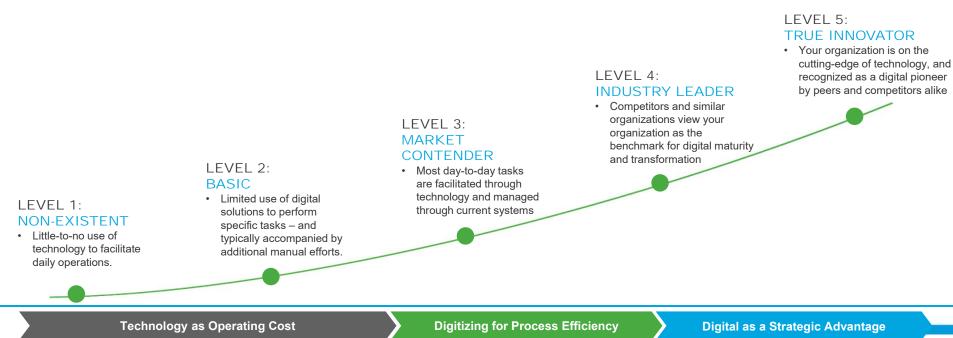
How you leverage technology to engage your customers and external stakeholders.

Business Operations

Using the right technologies and systems to transform how you operate, creating higher levels of efficiency and accuracy in day-to-day activities.

People Enablement

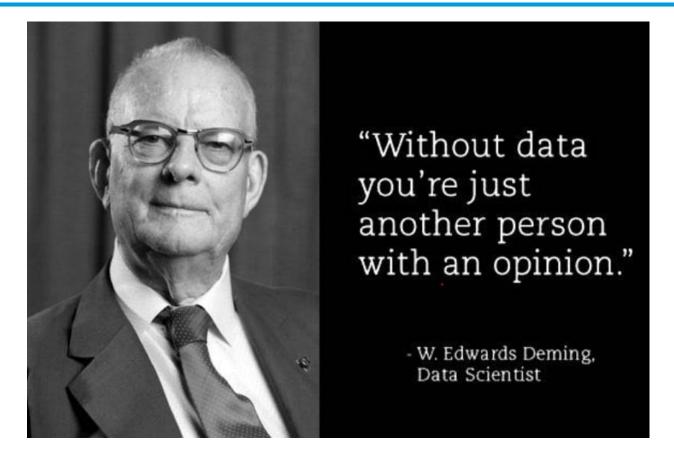
Giving your teams the digital tools, capabilities and culture to be more effective and increase value contribution on a regular basis.


Data & Integration

Capturing and using data to create better insights, deliver more personalized experiences and improve decision making .

The Digital Journey - Where are you & where do you need to be?

A key output of the Digital Strategy Roadmap is determining the target level of maturity for each domain that is needed to support your business strategy



DATA DRIVEN TRANSFORMATION

Richard Davis

One person's opinion regarding the importance of data

Gathering the data for decision-making

Like the physical universe, the digital universe is large – by 2020 containing nearly as many digital bits as there are stars in the universe. It is doubling in size every two years, and by 2020 the digital universe – the data we create and copy annually – will reach 44 zettabytes, or 44 trillion gigabytes.

So much information...now what

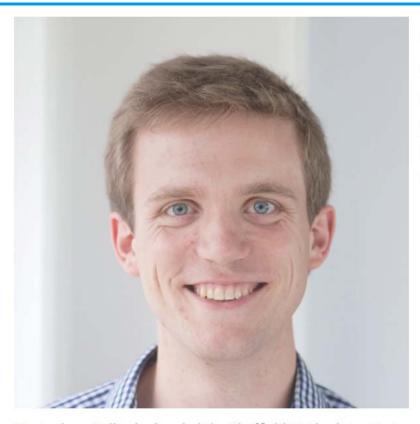
The phrase data rich and information poor (DRIP) was first used in the 1983 best-selling business book, In Search of Excellence, to describe organizations rich in data, but lacking the processes to produce meaningful information and create a competitive advantage.

DRIP was defeated in the private sector with wise implementation of information technology.

WHAT DOES "GREAT" **LOOK LIKE**

A sports and entertainment industry example

What does "great' data-driven decision making look like?



What does "great" look like?

Formula 1 is a data-driven sport: During each race, 120 sensors on each car generate 3 GB of data, and 1,500 data points are generated each second. Using Amazon SageMaker, Formula 1's data scientists are training deep-learning models with 65 years of historical race data to extract critical race performance statistics, make race predictions, and give fans insight into the split-second decisions and strategies adopted by teams and drivers.

Formula 1 – Framing the history

"The driver effect has declined over time since at least 1980, going from about 30% driver in the early 1980s, to about 10% driver today."

> Dr. Andrew Bell. Sheffield Methods Institute, Sheffield University

Dr. Andrew Bell, who headed the Sheffield Methods Institute research team, says that on average over the period 1979 to 2014, 86 percent of the performance of a driver/car combination stems from the car/team and 14 percent from the driver.

Data driven value creation (DDVC)

Data Driven Value Creation

Optimize Revenue

- The company growth strategy is clearly defined around net new customer acquisition, organic growth, and acquisitive growth
- Commercial Sales teams harness market and customer data to drive more effective and profitable management of customers

Drive Margin · A transparent and actionable 360 view of customers is at the core of every discussion to manage churn risk and profitability

Multiply **EBITDA**

 Operational trends across the internal business functions continually identify breakdowns in efficiency and effectiveness potential and guide initiatives to improve margins product and pricing trends across the customer base

Improve Cash Flow

Optimizing the SG&A landscape and analyzing the spans and layers of the portfolio company to ensure the lowest possible cost of delivery to enhance **EBITDA**

· Getting line of sight to cash and working capital to drive investment in systems, processes and acquisitions to drive EBITDA multiples

The data driven CFO: The influential value creator

- He has created a Single Version of Operational (SVOT) to guide decision making around investments that create value for the portfolio company
- She has normalized all relevant sources of enterprise data and has developed operational analyses to identify key business trends and where improvements can be made
- He delivers timely analysis and business insights to the business functions that inform teams how to improve profitability
- She knows cash, she knows how to manage it, and she knows how to drive the operational levers to create more of it

Office of the CFO – Target operating model

The Target Operating Model (TOM) maximizes the value of a Finance function through the alignment of strategic objectives with the planned design of the enterprise business model. The path to Transforming and/or Innovating can be measured by the effectiveness of each component and is unique for each organization.

Linking finance to operations and analytics

Enterprise Transaction "Processes" Typically governed within Enterprise Systems and Workflows Lead to Cash Procure to Pay Source to Make Hire to Retire Record to Report

- The ABBYY platform shines when it comes to intelligently and intuitively analyzing the design of end-to-end business processes in an organization.
- It takes transactional data from systems and models it visually so a company can see where performance bottlenecks exist enterprise wide
- It allows business leaders to see the breakdowns in the design of business processes, to make a solid case for RPA and Predictive Analytics.

The The **ABBYY** Alteryx Use Case Use Case **ABBYY** alteryx Analyzes business **Automates Human** processes to identify Processes When process design flaws Humans want to to drive automation Analyze Something opportunities Each Element of our approach Drives an Transaction Manual RPA Strategy Processing **Process** Focused Focused AUTOMATION ANYWHERE + ableau

Human Analytic "Processes"
Things Finance Teams do "Manually"
outside of transaction processing

FP&A

Controllership

Accounts Payable

Accounts Receivable

Treasury / Tax / Payroll

- The Alteryx platform shines when it comes to intelligently blending and modeling data to be used for analysis and reporting.
- Users can leave the breadcrumbs of how they did their analyses and more important, allows them to repeat it and automate the analytic being performed
- Moreover, it automates the process for gathering data to be modeled and can feed source system and RPA solutions to drive scalability

Every Step Drives Analytical Insights to Automate Finance

© 2020 RSM US LLP. All Rights Reserved. | Page 19

For Discussion Purposes Only – Subject to Material Change

Leading practices in field services optimization

Field Service Automation – Give the technicians the right toolsets

- Reductions can be found by setting up levels of automation in **field service software for the technicians** that do the tasks otherwise done by back office staff (estimating, procurement, bill review)
- Field service organizations can save on office administration costs, which can be reduced with fewer people working in call center or dispatching roles.

Maximize Service Delivery - Drive optimal resource utilization for the technician base

- Delivering exceptional service efficiently with improved first time fix rates while reigning in additional costs.
- Utilizing optimum scheduling and dispatch tools to complete more service calls per shift and **getting the right level of tech to the** level of complexity of the work order

Mobile Platform - Make the technician's and customer's life easier when delivering service to customers

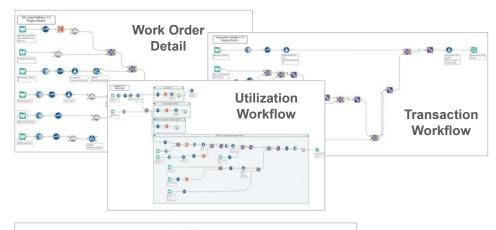
- Increasing mobile tools functionality that can **help the technician be even more efficient** in their work and give them the capability to optimize their day to day job.
- Where speed and efficiency are critical components, mobile field service features should allow technicians to **have everything they need to complete a service call on their mobile device**, without the need for time-consuming manual data entry

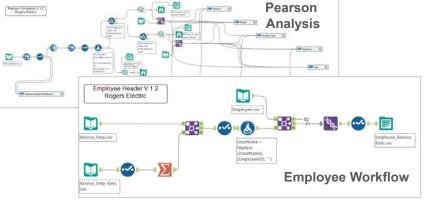
Platform Integration – Improve the ability for the organization to harness the power of data to drive better performance

- Leverage native system modules and feature sets with minimal customizations to deliver technology that is scalable and easily managed by IT.
- Ability to openly integrate with other related services (ERP, CRM, customer portals, supplier sites)

Where field service organizations investing in technologies*

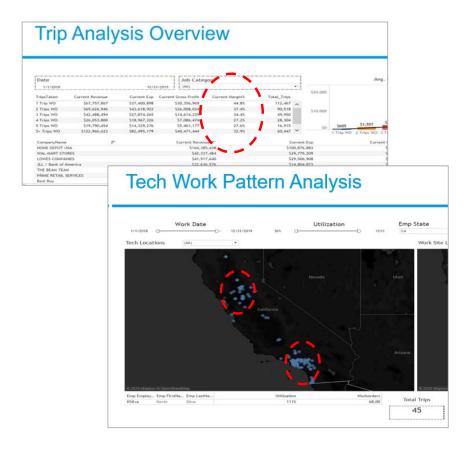
- TSIA's Global Technology Survey covers 42 categories of technology used by service organizations
- More than 50% of all respondents have indicated that they will be making investments in Knowledge Management, Collaboration, Customer Relationship Management (CRM), and Configure, Price, and Quote, and Self Service platforms.
- 75% of all respondents in the survey have indicated the highest possible user adoption rates of said platforms
- The aforementioned platforms are designed to assist service organizations to improve the efficiency among teams and provide the best possible opportunities to identify and capture revenue and margin improvements across the enterprise.




	less than 25%	6 25% - 49%	50% - 74%	75% or more	
Billing/Invoicing M R	Call Me/ Chat with Me Now S	Capacity Management M	Certification E	CMDB M	Communities/ Collaboration C E F M P R S
Consumption Analytics C E F M P R S X	Content Marketing C	Contract/Entitlement C F M R S X	Customer Experience (CX) Analytics C[E[F M]P]R S X	CRM C E F M P R S X	Configure Price Quote M P R X
Customer Success Work Management C	Event Correlation M	Event Monitoring/ Notification M	Field Service Scheduling/ Dispatch F M	Gamification S E X	IoT Platform F
Installed Base, Asset and Device Management F	Intelligent Agents/Chat Bots C E S	Intelligent Search E F P S	Knowledge/Content Management E F M P S	Learning Management E M S	Mobility and Video
Orchestration M	Parts and Logistics F M	Proactive Support F S M	PSA E P	Recurring Revenue C F M R	Release Managemen M
Remote Control E F M S	Reporting/Analytics C F S E P M R X	Self-Service Portals E F M S	Service Desk M	Social Media S	Support Scheduling M S
Unified Communication F M S	Upsell/Cross-Sell C F S M R X	Video Content Management C I E I S	Virtual Lab Infrastructure E	Web Chat S	Web Collaboration

*Source: 2018 TISA Technology Services Heat Map

"Wrangling the data" from the client's source systems



- A significant amount of time was spent working with the client's technology and finance teams to extract large volumes of data from REMA, AX and Zora.
- There were a number of challenges with respect to identifying the source data among the data tables in REMA, particularly due to the fact that the underlying data base structure has not been documented.
- In the end approximately 250K individual work orders were analyzed, with a total number of rows analyzed was in the Millions in order to create a data model that statistically significant enough to model future operational improvements for the business.
- These data workflows, scripts and resulting analyses and dashboards are all available to the client's technology team to assist them in the development of their data warehouse and BI initiatives.

Deep dive analysis* performed and observations regarding data quality

Demand Management

- All the demand forecasting is performed using project managers experience.
- The client has had rich data for almost two decades, it is critical to have a Statistical Forecasting Time Series model to predict the demand by district

Revenue and Expenses

 All the expenses for a work order are categorized but revenues are collected in one category of fees. Maintaining a breakdown of revenues is important to compare apples with apples.

Material Tracking

• It is important to track the items in a PO to maintain and compare the similarities and price adjustments in a WO

Inventory Management

 No Data system to maintain the log of inventory, it is completely based on Tech conversation. This needs to be changed to proper data reporting as it increases accountability and reduces material leakage.

Route / Tech Dispatch

 There is good amount of data to decide and track if a Techie is over skilled or under skilled for a WO. Currently only location and availability are the only factors considered to dispatch a Techie.

Data Governance and Data Quality

 There is lack of Data quality in locations (Both customers and Techs) there are lot of Typos and wrong entries due to high amount of manual work.

First time fixed – trip analysis

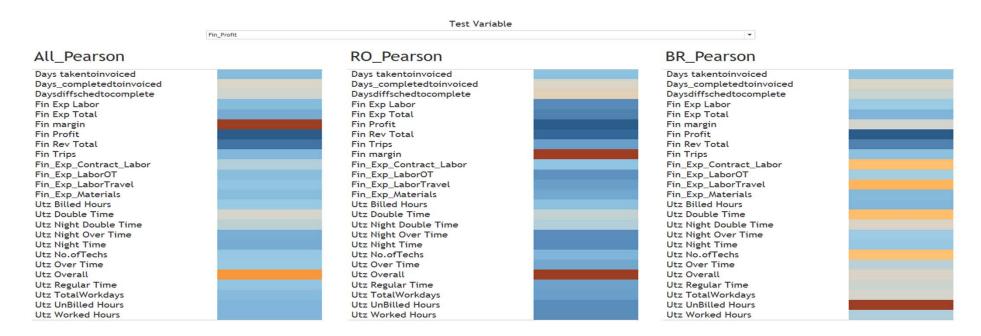
Category: Technician Effectiveness/Profitability

- Information presented over 2 years (2018/2019) shows the average margin per trip, ranging from 1 to greater than 5 trips
- Data includes average 1st time completion rate during the trip
- Data is broken out by EBR and LBR Technician with the understanding that margin (bill rates) vary.

Considerations

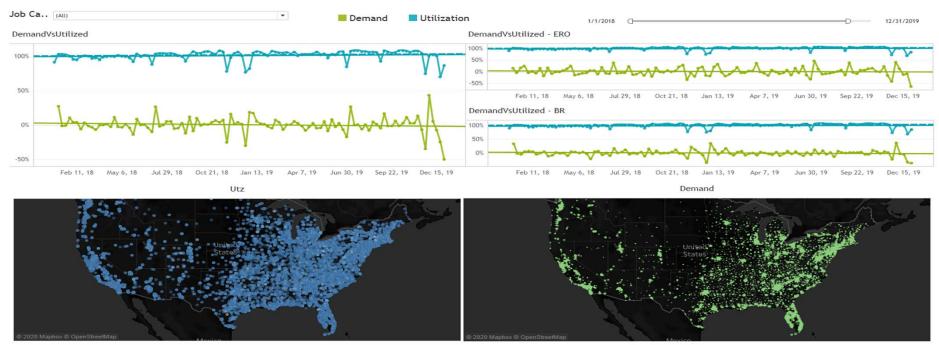
• Trip analysis is a macro profitability indicator that shows margin expansion opportunity closer to getting the initial trip 'right the first time' e.g. all equipment/parts, the correct skillset match and technician availability to get the work done on time and per standard hours for the work order.

		1 Trip	wo		2 Trip	wc	ס	::	3 Trip	wo		4 Trip	wo			5 Trip	wo			5+ Trip	wo		Tota	al	
	E	BR	LBR		EBR		LBR	EBR		LBR		EBR	LE	3R	- 1	EBR		LBR	Е	BR	LBR		EBR	LE	3R
Average 1st Time Correct by Trip		69.6%	64.9%		36.0%		43.3%	20	0.3%	26.1%		12.1%		17.7%		10.4%		9.5%		11.9%	11.6	1%	37.3%		38.7%
Average EBR / LBR Margin % Across Customer Locations		35.4%	44.6%		30.8%		33.6%	28	3.4%	26.5%		24.8%		20.8%		22.5%		17.8%		21.6%	16.4	1 %	29.8%		32.7%
Total Revenue	\$ 16,	872,670	\$ 14,303,779	\$ 1	15,133,923	\$ 1	13,529,435	\$ 8,955,	123	\$ 7,635,388	\$ 5	,253,165	\$ 4,04	15,639	\$ 2,8	350,268	\$ 2,	354,121	\$ 6,2	222,350	\$ 3,286,08	8 \$	55,287,499	\$ 45,1	54,449
Total Margin	\$ 5,	970,681	\$ 6,383,697	\$	4,653,912	\$	4,550,290	\$ 2,545,	415	\$ 2,026,968	\$ 1	,304,782	\$ 83	39,721	\$ 6	541,494	\$	417,936	\$ 1,3	345,755	\$ 537,59	2 \$	16,462,039	\$ 14,7	56,204
Top 20 Customer Revenue (Ranked by Margin Vol)	\$ 14,	409,834	\$ 13,865,936	\$ 1	12,704,885	\$ 1	12,892,666	\$ 7,488,	664	\$ 7,216,136	\$ 4	,308,983	\$ 3,85	58,125	\$ 2,3	367,509	\$ 2,	251,113	\$ 4,9	905,233	\$ 3,141,31	3 \$	46,185,108	\$ 43,2	25,288
Top 20 Customer Margin (Ranked by Margin Vol)	\$ 5,	149,054	\$ 6,218,805	\$	3,881,455	\$	4,351,275	\$ 2,111,	771	\$ 1,912,540	\$ 1	,082,894	\$ 80	05,163	\$!	532,292	\$	392,748	\$ 1,0	009,350	\$ 505,50	5 \$	13,766,817	\$ 14,1	86,036
Top 20 Margin %		35.7%	44.8%		30.6%		33.8%	28	3.2%	26.5%		25.1%		20.9%		22.5%		17.4%		20.6%	16.1	.%	29.8%		32.8%
The Rest Revenue (Ranked by Margin Vol)	\$ 2,	462,836	\$ 437,843	\$	2,429,038	\$	636,769	\$ 1,466,	459	\$ 419,252	\$	944,182	\$ 18	37,513	\$ 4	182,759	\$	103,008	\$ 1,3	317,118	\$ 144,77	6 \$	9,102,391	\$ 1,9	29,161
The Rest Margin (by Margin Vol)	\$	821,627	\$ 164,893	\$	772,457	\$	199,015	\$ 433,	644	\$ 114,427	\$	221,889	\$ 3	34,558	\$:	109,202	\$	25,188	\$ 3	36,405	\$ 32,08	7 \$	2,695,222	\$ 5	70,168
The Rest Margin %		33.4%	37.7%		31.8%		31.3%	29	9.6%	27.3%		23.5%		18.4%		22.6%		24.5%		25.5%	22.2	:%	29.6%		29.6%
Top 20 Customers EBR @ 35.4% / LBR @ 44.6%	\$ 5,	099,165	\$ 6,188,290	\$	4,495,840	\$	5,753,925	\$ 2,649,	991	\$ 3,220,521	\$ 1	,524,807	\$ 1,72	21,860	\$ 8	337,783	\$ 1,	004,659	\$ 1,7	735,800	\$ 1,401,95	0 \$	16,343,386	\$ 19,2	91,207
Additional Margin Top 20	\$	(49,889)	\$ (30,514)	\$	614,384	\$	1,402,650	\$ 538,	220	\$ 1,307,981	\$	441,913	\$ 93	16,697	\$ 3	305,491	\$	611,911	\$ 7	726,450	\$ 896,44	.5 \$	2,576,569	\$ 5,1	05,171
The Rest EBR @ 35.4% and LBR @ 44.6%	\$	871,516	\$ 195,407	\$	859,556	\$	284,186	\$ 518,	931	\$ 187,110	\$	334,115	\$ 8	33,686	\$:	170,832	\$	45,972	\$ 4	166,084	\$ 64,61	.3 \$.	_3,2 21 ,035	5 8	60,974
Additional Margin The Rest	\$	49,889	\$ 30,514	\$	87,100	\$	85,171	\$ 85,	288	\$ 72,683	\$	112,226	\$ 4	19,128	\$	61,631	\$	20,784	\$ 1	129,680	\$ 32,52	.6 \$	525,814	\$ 2	90,806
Total Margin Opportunity	\$	0	\$ 0	\$	701,484	\$	1,487,822	\$ 623,	508	\$ 1,380,664	\$	554,139	\$ 96	55,825	\$ 3	367,122	\$	632,695	\$ 8	356,130	\$ 928,97	1 \$	3,102,383	\$ 5,3	95,977

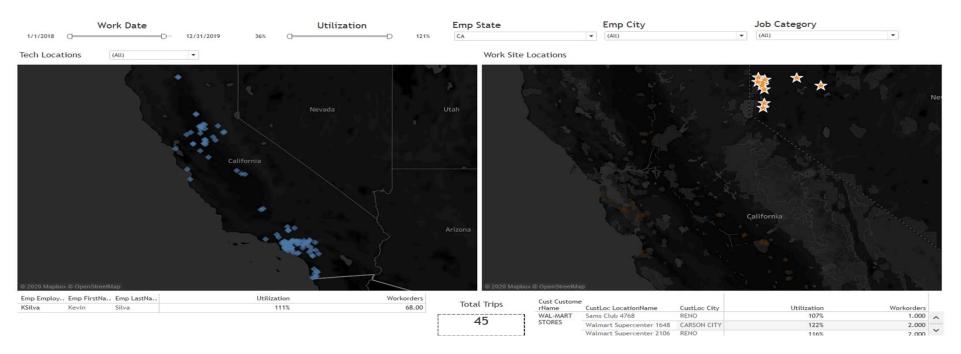


The universe of manual touches and the life of a work order

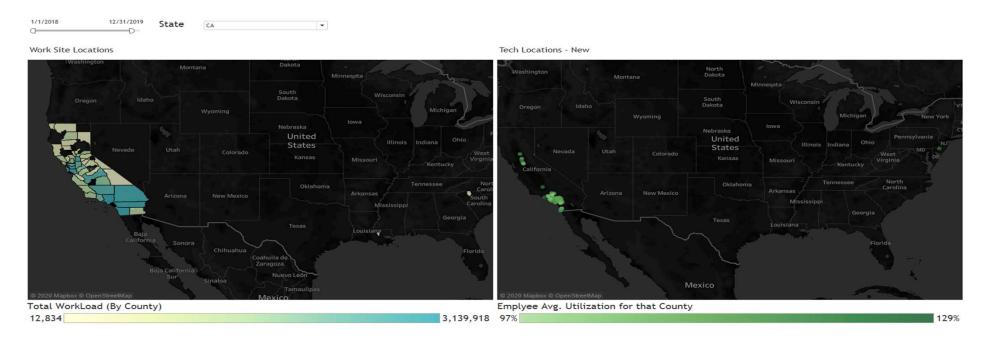
Scheduling & Dispatch	Platforms	Work Order Management	Estimating	Procurement	NTE Billing Review	Invoicing	Collections	Record to Report
130,000 W/O accepted Create W/O	7+ Customer Portal Platforms	65,000 hours updating REMA work orders	Tech Parts Picker time 21,000 hours	25,000 EBR/LBR Approvals 12,500 hours	15,000+ hours uploading Customer Portals	2,000 invoices processed per week	7+ Customer Porta	month end close
8,300 hours W/O scheduled 16,700 hours	10+ IVR Platforms REMA	65,000 hours updating Cust Portals	Tech estimate notes 6,250 hours 50,000 EBR/LBR	25,000 PO's created 6,250 hours	15,000+ hours getting NTE approval			100+ tasks tracked each month
1,500 hours historical W/O lookup	2 New REMA modules	196,000 trips	Estimates 12,500 hours	25,000 PO's tracked 4,100 hours	22,000 hours Spent on Bill Review			1,000's of hours building XLS reports
26,500 hours	> 15+ Platforms	130,000 hours	40,000 hours	22,850 hours	52,000 hours	2,000 weekly invoices	7+ Portals	100+ tasks tracked


Pearson correlation analysis

Pearson Correlation Coefficient is a statistic that measures linear relation between two variables. This reports helps to identify the factors negatively impacting our target variables like Profit, Margin, Utilization, etc.


Demand vs. utilization

This report visualizes the Demand & Utilization across United States over last two years


Tech work pattern analysis

A detail location based report used to understand a tech work site patterns along his utilization and contribution.

Work load vs. utilization

This report helps to identify workload by county and understand the location of techs contributed to that workload.

Tech skill analysis

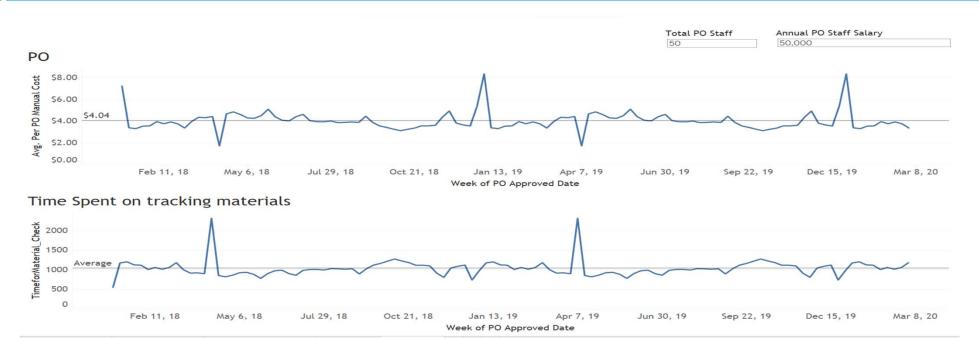
			WOH WOJobCatego			Utz TechWorkDate	Utz_TechTruck Ratin	ø
Utz TechEmploy.		EBR	ERO	LBR	LRO	= 1/1/2018 12/31/2019	✓ (All)	5
Grand Total	Trip2WS	26,092	29,116	16,399	237 ^			
	Workorders	11,076	9,895	3,723	38	J	✓ Null	
	Avg. Utz_TechKronos_rate	32	31	33	26		✓ A	
JElkin	Trip2WS	1,076	691	807		Utz TechOverall Ra	✓ B	
	Workorders	468	189	236			✓ C	
	Avg. Utz_TechKronos_rate	50	50	50		✓ (All)	✓ D	
MYagarich	Trip2WS	142	593	49		✓ A	Utz TechWorks Well	with
	Workorders	48	277	15		✓ B	✓ (All)	
	Avg. Utz_TechKronos_rate	44	44	44		✓ C		^
MDoyon	Trip2WS	547	248	300	87	✓ D	✓ Null	
	Workorders	300	109	77	1		✓ B	
	Avg. Utz_TechKronos_rate	44	44	44	44		✓ A	
MLeo	Trip2WS	590	517	512		Utz_TechSkill Level	✓ B	
	Workorders	281	115	149		(All)	✓ C	~
	Avg. Utz_TechKronos_rate	43	43	43		Null	_ C	
JLucas	Trip2WS	1,186	528	994		Apprentice		
	Workorders	304	152	182			Utz_TechPosition	
	Avg. Utz_TechKronos_rate	43	43	43		✓ apprentice	✓ (All)	
VEspinoza	Trip2WS	307	263	180		Journeyman		_
	Workorders	175	10 4	44		journeyman	✓ Field Coordinate	
	Avg. Utz_TechKronos_rate	4 1	41	41		✓ Master ✓	Service Apprenti	
PCassidy	Trip2WS	586	629	384			Service Electrici	an
	Workorders	267	291	82		Utz TechNights / Weeke	ands Availability	
	Avg. Utz_TechKronos_rate	40	40	40			ends Availability	
BBennett	Trip2WS	363	716	249		☑ (All)		
BBennett	Workorders	120	285	51		✓ Null		
	Avg. Utz_TechKronos_rate	40	40	40		✓ A		
WCronin	Trip2WS	298	246	172		✓ B		
	Workorders	187	124	66		✓ C		
	Avg. Utz_TechKronos_rate	39	39	39	~			
CELESAS	T-:-2\A/C	402	424	210	Ť			

A detailed report with tech rating to understand the work level contribution across major business lines

In state – out of state work patterns

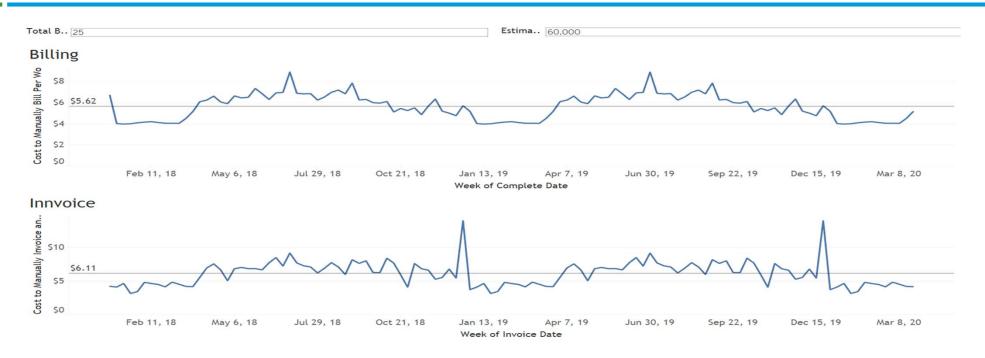
		Trip2WS		Workorde					
Emp Employe	eID Emp St	In State Work	Out of State Work	In State Work	Out of State Work	Utz TechWork[ate	Utz_TechTruck	Rating
Grand Total		35,388	10,816	19,579	5,334 ^	1/1/2018	12/31/2019	✓ (All)	^
AAnderson	FL	759	1	537	6	O-		✓ Null	
AAttardi	NJ	504	75	146	35	Utz TechOvera	II Da	✓ A	
ADanner	OH	355	199	221	111		ill Ra	✓ B	
ATorres	MS		14		8	✓ (All)	^	☑ C	
BBennett	NH	655	341	275	180	✓ A			~
BLemmon	MI	690	2	427	23	✓ B			
BSchlueter	MO	67	298	53	190	✓ C	~		
CAkers	VA	624	12	326	8	_ r	*		
CByron	FL	785		356	2	Utz_TechSkill	Level	Utz_TechWork	s well with
CCabrera	FL	424	6	398	9	(All)		✓ (All)	^
Clvory	FL	831	20	550	18		^	✓ Null	
CKellner	TN	711	130	365	83	Null		✓ B	
DBino	NJ	1		1	1	Apprentice		✓ A	
DCasado	FL	313	49	160	25	∡ apprentice		✓ B	
DRodriguez	NJ	280	289	103	111	Journeyma	n 🗸	☑ C	~
EDiaz	FL	734	99	470	47			•	*
FBurns	CA	558	3	384	3				
FEscobar	FL	844		444		Utz TechPosit			
FMartin	FL	240	220	116	188		ion		
FSmith	IL	572	4	120	7	✓ (All)			
GNowicki	KY	582	45	348	28	✓ Field Coord	linator		
GSierra	FL	588	3	366	4	✓ Service App	prentice		
JAtkins	AL	653	276	386	150	✓ Service Ele	ctrician		
JElkin	OR	1,259	3	878	3	Utz TechNight	s / Weeke	ends Availability	
JFernandez	FL	673	3	310	7	✓ (All)		,	
JFolsom	SC	484	443	285	249	✓ (Att) ✓ Null			^
JGerau	WV	350	343	187	177	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			
JHarteau	GA	486	9	386	14	✓ A			
JHawkins	GA	507	46	198	29	✓ B			
JJordan	NC		1		1 ~	✓ C			~

A detailed report with tech rating to understand the work level contribution across In-State and Out-of-State work orders


Material leakage

		2018			2019			Grand Total		
Job Category	Materials-Cost	Material Waste	Material Leakage	Materials-Cost	Material Waste	Material Leakage	Materials-Cost	Material Waste	Material Leakage	Projtransdate 1/1/2018 12/31/201
Grand Total	21,147,126	2,114,713	10%	21,752,719	2,175,272	10%	42,899,845	4,289,984	10%	
CRP	19,910	1,991	10%	176	18	10%	20,087	2,009	10%	Material Leakage
CSP	0	0	10%	0	0	10%	0	0	10%	
EBR	3,556,287	355,629	10%	3,406,701	340,670	10%	6,962,988	696,299	10%	
ER1	351,013	35,101	10%	202,864	20,286	10%	553,877	55,388	10%	
ER12	407,233	40,723	10%	39,361	3,936	10%	446,594	44,659	10%	
ERO	9,677,929	967,793	10%	12,267,705	1,226,770	10%	21,945,633	2,194,563	10%	
ESP	91,846	9,185	10%	1,321,621	132,162	10%	1,413,467	141,347	10%	
GOV				0	0	10%	0	0	10%	
HR1				195	20	10%	195	20	10%	
LBR	2,769,655	276,966	10%	2,659,372	265,937	10%	5,429,027	542,903	10%	
LR1	0	0	10%	76,024	7,602	10%	76,024	7,602	10%	
LRM	513,624	51,362	10%	549,900	54,990	10%	1,063,524	106,352	10%	
LRO	3,722,784	372,278	10%	895,131	89,513	10%	4,617,915	461,791	10%	
LRP	36,846	3,685	10%	-86	-9	10%	36,760	3,676	10%	
PR1	0	0	10%	17,388	1,739	10%	17,388	1,739	10%	
R1P				316,366	31,637	10%	316,366	31,637	10%	

A dynamic report used to calculate Material Waste across multiple Business Lines over last two years


Manual time and costs tracking material and POs

A Dynamic report used to calculate manual costs for PO generation and time taken to track materials

Manual costs incurred per bill and invoice

A Dynamic report used to calculate manual costs incurred for generating Bill and Invoice manually.

Projected operational efficiency savings and impact on margins

- The table below contains a number of operational efficiency projections based upon the historical data provided by the client applied to the performance of key business processes. The projections are intended to be directional savings, and do not represent a forecast.
- The RSM team analyzed a series of discrete processes on an individual use-case basis, accordingly, there could be some slight overlap in efficiency projections given the fact that the same data set was used to assess multiple processes.
- Taking into account the potential for overlapping of business process activities among technicians and back office team members, there is still the probability to achieve a range of \$10M to \$12M of operational efficiencies that could further drive margin improvements for the company.

	Operational Potential	Enhance Reporting	Enhance Control	Existing REMA Initiative	Integrate New Technology	Estimated Level of Effort	Expected Value Creation
Technician Profitability - Parts Picker Imp.	\$292,000	X	Х	Х		Medium	High
Technician Profitability – IVR Opp.	\$135,000						
Work Order Management – Search	\$51,000	X		х	X	Medium	High
Work Order Management – Portals	TBD				X		
Procurement (EBR & LBR)	\$135,000	X	Х			High	Medium
Estimating	\$294,000	X	X			Medium	High
Billing Review	\$250,000	X				Low	Medium
Material Management	\$2,150,000	X			X	High	High
Invoicing	\$200,000	X				Low	Medium
Right Tech for the Right Job	\$2,967,000		Х	(TBD)		High	High
Improving First Time Fixed Rate	\$8,500,000						

Enhancing the technology roadmap

Current IT Initiatives

- Business Intelligence (BI) Consulting
- BI Reporting & Dashboards
- Enterprise Data Warehouse
- Manpower Utilization
- Process Consulting
- Office 365 (Phase 1)
- IVR Automation
- Technician Scorecard
- Dispatch Implementation
- Customer Integration Project
- **Bulk Purchase Order Project**
- Billing Engine Re-write
- Miscellaneous Integrations
- Disaster Recovery Site
- Disaster Recovery Site
- Single Sign-On (SSO)
- SDWan Implementation
- Sage Financials to AX

Preliminary Process Improvements

- Parts Picker Improvements
- IVR Improvements
- WO Management Search
- WO Management Portals
- **Procurement**
- Estimating
- Billing Review
- Material Management
- Invoicina
- Right Tech for the Right Job
- Improving Frist Time Fixed Rate

Value Creation Focus on Performance **Management** Service **Excellence Business Applications** Other Infrastructure

Preliminary Priorities

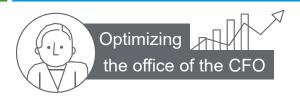
- Knowledge Management
- Collaboration Management
- Business Intelligence Consulting
- BI Reporting & Dashboards
- Enterprise Data Warehouse
- Manpower Utilization
- Office 365 (Phase 1)
- IVR Automation
- Technician Scorecard
- Dispatch Implementation
- · Field Estimation Capability
- · Field Procurement
- · Parts Picker Update & Training
- · Procurement Platform
- · Customer Integration Project
- · Bulk Purchase Order Project
- · Inventory Management Platform
- Contract Lifecycle Management
- · Billing Engine Re-write
- · Miscellaneous Integrations
- · Disaster Recovery Site
- Single Sign-On (SSO)
- · SDWan Implementation
- Sage Financials to AX

DATA TRANSFORMATION **JOURNEY**

Gavin Backos

The innovation CFO: Becoming influential and driving value

The innovative CFO maximizes the value of a finance function through the alignment of strategic objectives with the planned design of the enterprise business model. The path to transforming and/or Innovating can be measured by the effectiveness of each component and is unique for each organization.



Office of the CFO: Target operating model

RSM's enterprise target operating model is an excellent tool to assess the client's current functional operating model, in order to create a business case for innovative change that supports your desired future state transformation.

Optimizing the office of the CFO – becoming influential and driving value

The CFO's role is to enable the enterprise to effectively execute its strategic vision by providing a high performing finance function integrates operations, finance, accounting, reporting, and performance measurement

The innovative CFO maximizes the value of a finance function through the alignment of strategic objectives with the planned design of the enterprise business model. The path to transforming and innovating can be measured by the effectiveness of each component RSM's enterprise target operating model and is unique for each organization.

Creating a business case for innovative change that supports your desired future state transformation begins with assessing your current functional operating model, evaluating your strategic goals and positioning your function value additive to the enterprise.

© 2020 RSM US LLP. All Rights Reserved. | Page 40

Starts with alignment of enterprise Becoming influential and driving value strategy and functional design Order to cash · Serve customers faster and more effectively SUSTAIN • Error reduction with integrated software · Effectively manage cash inflows Procure to pay Proactively manage vendors and suppliers • Establish strategic sourcing function Organization Technology & people • Deliver robust reporting and analytics · Develop a quality financial close Policy, Acquire to retire Controls & STRATEGY Process · Efficiently track and manage assets Compliance · Establish clearly defined CapEx processes & policies Data & Performance reporting management · Sophisticated budgeting, forecasting, PARGET OPERATING MODE

Sustainer

The organization has highly manual processes and outdated technology that impairs their ability to achieve business objectives

Transformer

The organization has begun to incorporate automation in processes and technology that improves their ability to achieve objectives consistently

Innovator

The organization leverages endto-end integration throughout the business architecture that enables timely delivery of operational and strategic information to make critical decisions

and planning capabilities

- Deliver seamless employee experience
- · Effective labor management
- · Data supported performance management

Tax structuree to filing

- · Create, protect and maximize value through improved compliance, minimized risk exposure, and reduced expense burdens
- Implement best-fit tools and technologies

Impacting the office of the CFO

Close faster

Ability to close, consolidate, and report up to

50% faster

than average

Save money

Perform the finance & accounting function at over

40% lower

cost than average

More analytical

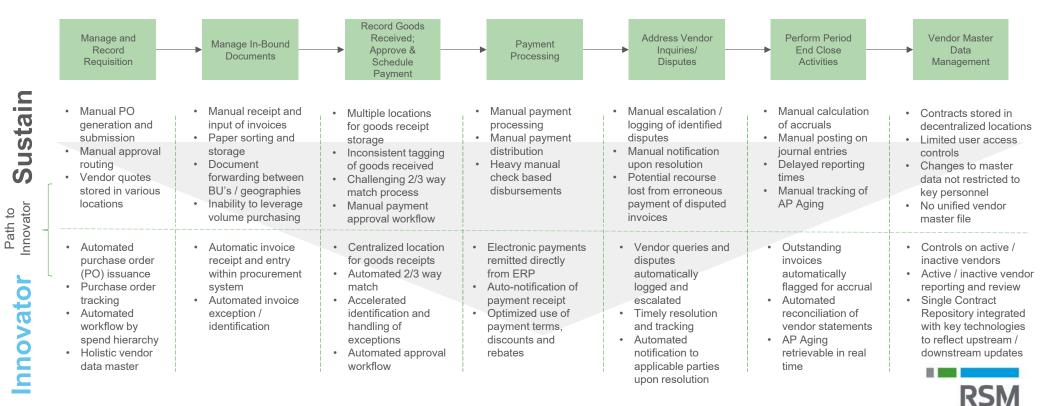
Enable workforce to focus on analytical activities with

25% less

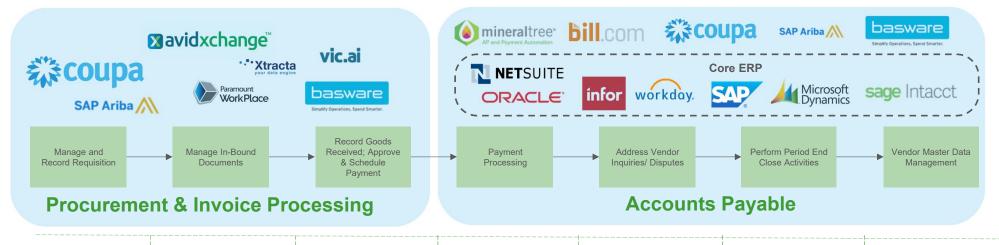
resources dedicated to transactional processing

More reliable

Improve data and reporting accuracy by


10%

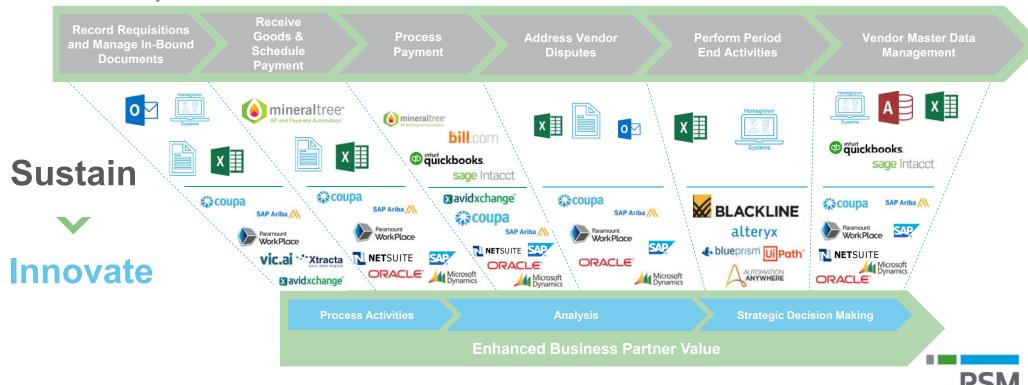
versus the average


Example function – Procure-to-pay: Maturity alignment

A transition from a Sustainable to an Innovative Procure to Pay business process will enable organizations to become more efficient, scalable, effective, accurate, and controlled across people, process, and technology landscape.

Example function – Procure-to-pay: Technology alignment

A transition from a Sustainable to an Innovative Procure to Pay business process will enable organizations to become more efficient, scalable, effective, accurate, and controlled across people, process, and technology landscape.



- Automated purchase order (PO) issuance
- Purchase order tracking
- Automated workflow by spend hierarchy
- Holistic vendor data master
- · Automatic invoice receipt and entry within procurement system
- Automated invoice exception / identification
- · Centralized location for goods receipts
- Automated 2/3 way match
- Accelerated identification and handling of exceptions
- Automated approval workflow
- Electronic payments remitted directly from ERP
- Auto-notification of payment receipt
- Optimized use of payment terms. discounts and rebates
- · Vendor gueries and disputes automatically logged and escalated
- · Timely resolution and tracking
- Automated notification to applicable parties upon resolution
- Outstanding invoices automatically flagged for accrual
- Automated reconciliation of vendor statements
- AP Aging retrievable in real time
- · Controls on active / inactive vendors
- Active / inactive vendor reporting and review
- Single Contract Repository integrated with key technologies to reflect upstream / downstream updates

Example function – Procure-to-pay: Digital evolution

An organization's digital maturity evolves from Sustainable to Innovator through the use and implementation of applications and software. The graphic below shows a typical transformation as it relates to the software surrounding Procure to Pay

DIGITAL WORKFLOW

Ron Browning

Why digital transformation of business processes and operations?

Digital transformation drivers – where are your focuses?

DIGITAL TRANSFORMATION BENEFITS

Enhanced cost efficiency

Operational scalability and sustainability

Reduced time spent on administrativetype activities

Reduced risk

Organizational alignment based on workload, needs and goals

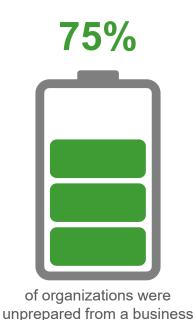
Improved process performance and accuracy

Data-driven decisions on major business systems

More efficient timeto-market

Increased collaboration and coordination

Scalable digital work environments


Improved communication throughout the organization

Why digital transformation of business processes and operations?

Impact on COVID-19

Never before has it been so important to be agile. As illuminated by the ongoing COVID-19 pandemic, technology and digital transformation are no longer optional.

continuity perspective

of customer interaction will be led by technology by 2022, as consumer expectations change

Two components

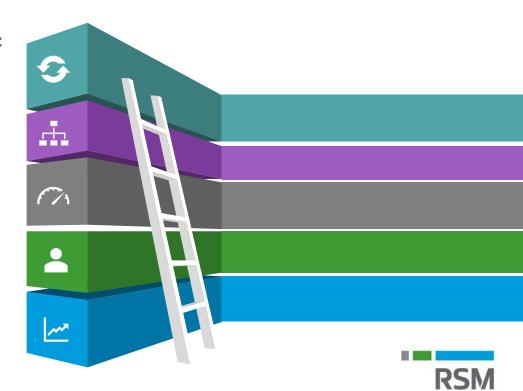
Two Core Components

Two components

Process Optimization

Automation and digitizing process should be focused on:

Low-value, high-volume


Inter-departmental

Efficiency and quality

Creating head room for more valuable work

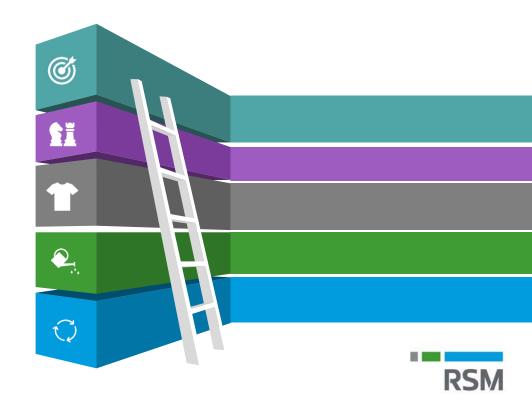
Maintaining or increasing output

Caution: Never automate an inefficient or ineffective process

Two components

Technology Enablement

Selecting the right technology should be focused on:


Alignment to an overall technology strategy

Purpose fit

Scalability

Longevity

Caution: Avoid over-confident technologies

What is digital transformation/?

Digital transformation technologies

Robotic Process Automation

- · Cost of robot a fraction of FTE, work up to 5x faster 24/7
- Reduction of human error rates → enhanced compliance and security
- · Robots can easily replicate and scale activities to meet peak or atypical workloads

Amazon EMR

R SS

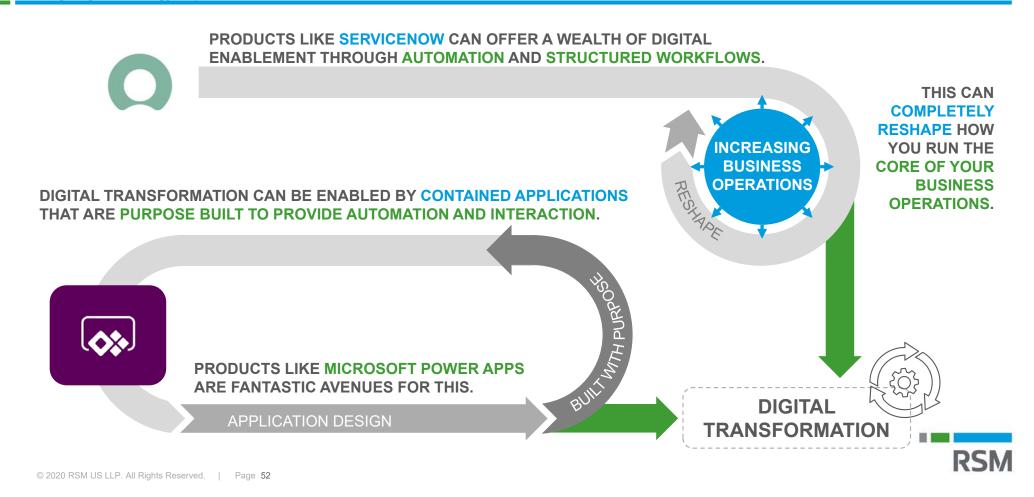
Artificial Intelligence

- · Advanced process automation
- · Strengthened analytical capabilities
 - · Learns, adjusts, and improves

Finance Automation

- Automated account reconciliation & task management → 75% reduction in close cycle time, 50% in time spent
- · Strong audit trail & ease of information exchange with auditors

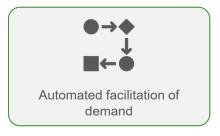
DEALCOSER


hostanalytics

Insights & Analytics

- · Analysis of business transactions and data for actionable insights
- · Forecasting capability of key metrics to increase efficiency

Aligning technology to process and outcomes



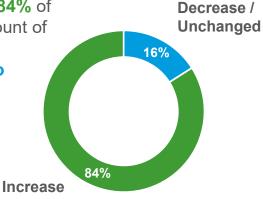
Aligning technology to process and outcomes

Digitizing business and operations processes is a transformational opportunity to systemically change how work is executed and managed within your organization

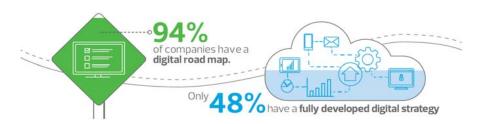
This is a culture change.

How do you start the journey

RSM 2018 Digital Transformation survey results


of organizations will increase digital transformation spending over the next three years.

MOST LIKELY ACTION ITEM FOR DIGITAL TRANSFORMATION



Over the next three years 84% of companies expect the amount of investment in customer experience technology to increase.

However, the same survey has shown that many companies are pursuing digital efforts without a fully developed strategy.

How do you start the journey

Getting started

It's important to just get started

This involves understanding and evaluating technology in the context of your organization and digital process opportunities:

QUESTIONS **AND ANSWERS**

THANK YOU FOR YOUR TIME AND **ATTENTION**

This document contains general information, may be based on authorities that are subject to change, and is not a substitute for professional advice or services. This document does not constitute audit, tax, consulting, business, financial, investment, legal or other professional advice, and you should consult a qualified professional advisor before taking any action based on the information herein. RSM US LLP, its affiliates and related entities are not responsible for any loss resulting from or relating to reliance on this document by any person. Internal Revenue Service rules require us to inform you that this communication may be deemed a solicitation to provide tax services. This communication is being sent to individuals who have subscribed to receive it or who we believe would have an interest in the topics discussed.

RSM US LLP is a limited liability partnership and the U.S. member firm of RSM International, a global network of independent audit, tax and consulting firms. The member firms of RSM International collaborate to provide services to global clients, but are separate and distinct legal entities that cannot obligate each other. Each member firm is responsible only for its own acts and omissions, and not those of any other party. Visit rsmus.com/aboutus for more information regarding RSM US LLP and RSM International.

RSM, the RSM logo and the power of being understood are registered trademarks of RSM International Association.

© 2020 RSM US LLP. All Rights Reserved.

